Transformation of polynomials orthogonal on the unit circle
نویسندگان
چکیده
منابع مشابه
Asymptotics of derivatives of orthogonal polynomials on the unit circle
We show that ratio asymptotics of orthogonal polynomials on the circle imply ratio asymptotics for all their derivatives. Moreover, by reworking ideas of P. Nevai, we show that uniform asymptotics for orthogonal polynomials on an arc of the unit circle imply asymptotics for all their derivatives. Let be a nite positive Borel measure on the unit circle (or [0; 2 ]). Let f'ng denote the orthonor...
متن کاملA New Class of Orthogonal Polynomials on the Unit Circle
Even though the theory of orthogonal polynomials on the unit circle, also known as the theory of Szegő polynomials, is very extensive, it is less known than the theory of orthogonal polynomials on the real line. One reason for this may be that “beautiful” examples on the theory of Szegő polynomials are scarce. This is in contrast to the wonderful examples of Jacobi, Laguerrer and Hermite polyno...
متن کاملOrthogonal polynomials on the unit circle: distribution of zeros
Marcellan, F. and E. Godoy, Orthogonal polynomials on the unit circle: distribution of zeros, Journal of Computational and Applied Mathematics 37 (1991) 195-208. In this paper we summarize some results concerning zeros of orthogonal polynomials with respect to an indefinite inner product. We analyze the inverse problem, i.e., a discrete representation for the functional in terms of the n th ort...
متن کاملUniversality Limits Involving Orthogonal Polynomials on the Unit Circle
We establish universality limits for measures on the unit circle. Assume that is a regular measure on the unit circle in the sense of Stahl and Totik, and is absolutely continuous in an open arc containing some point z = e . Assume, moreover, that 0 is positive and continuous at z. Then universality for holds at z, in the sense that the normalized reproducing kernel ~ Kn (z; t) satis es lim n!1...
متن کاملAlgorithms for the Geronimus transformation for orthogonal polynomials on the unit circle
Let L̂ be a positive definite bilinear functional on the unit circle defined on Pn, the space of polynomials of degree at most n. Then its Geronimus transformation L is defined by L̂(p, q) = L ( (z − α)p(z), (z − α)q(z) ) for all p, q ∈ Pn, α ∈ C. Given L̂, there are infinitely many such L which can be described by a complex free parameter. The Hessenberg matrix that appears in the recurrence rela...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Methods and Applications of Analysis
سال: 1998
ISSN: 1073-2772,1945-0001
DOI: 10.4310/maa.1998.v5.n1.a3